#### Ecology and Carbon Sequestration Program Overview



#### DOE Consortium for Research on *Enhancing*



Carbon **S**equestration in

> **T**errestrial **E**cosystems

#### Introduction

**Gary Jacobs** Oak Ridge National Laboratory March 19, 2003

#### **National Laboratories**

- Argonne National Laboratory
- •Oak Ridge National Laboratory
- Pacific Northwest National Laboratory

#### DOE

•National Energy Technology Laboratory

#### Universities

- Colorado State University
- •University of California Davis
- •Cornell University
- •North Carolina State University
- Ohio State University
- •Rice University
- •Texas A&M University
- •University of Washington



Forest

Agriculture

Grassland/Shrubland

**Degraded Mine** 

#### **Research Institutions**

- •Joanneum Inst for Energy Res, Austria
- •USDA Center for Forested Wetlands Res, SC
- •USDA Land Mgmt & Water Cons Unit, WA
- •USDA Coshocton Watershed



#### **CSiTE Mission**

### Fundamental science supporting approaches for enhanced sequestration

#### Soil carbon focus within context of whole ecosystems

- Discover how to alter carbon capture and sequestration mechanisms from molecular to landscape scales
- Develop conceptual and simulation models for extrapolation across spatial and temporal scales
- Advance science of assessing environmental and economic consequences of sequestration



### What's are some possible options to enhance carbon

#### 

- Alter inputs (litter), root density, depth, chemistry
  - Manage vegetation, alter cultivars
  - > Fertilization, moisture, etc.
- Shift decomposition rates and products
  - Shift structure and function of microbial communities
  - Modify chemistry
- Optimize physicochemical conditions
  - Physical/chemical protection
  - Humification redox reactions
  - > Promote deeper transport of C



#### Selected Accomplishments

- Elucidation of controls on rates and limits of accumulation of soil organic C
- Fractionation methods leading to new insights on soil organic carbon capture and longevity
- Emerging manipulation concepts
- Microbial microarray technology for exploring soil carbon processes
- Advances in modeling tools
- Model analysis of full CO<sub>2</sub> and greenhouse gas accounting
- Analyzing economic implications

# Elucidation of controls on rates & limits of accumulation of soil organic carbon

- **⇒** Inputs
- **→ Moisture**
- → Nitrogen
- **→** Microbial processes







#### Fractionation methods leading to new insights on soil organic carbon capture and longevity

- Soil organic matter is heterogeneous
  - Various physically protected forms
  - Stages of chemical transformation

➤ Microsites with varying environmental

conditions

□ Understanding processes that control C capture and longevity



# Emerging manipulation concepts:

Controls on humification

- **⇒** Redox conditions
  - Wetting/drying cycles
- **⇒** Fe/Mn oxide content
  - Fertilization
- Enzyme activities
  - High-phenolic cropping, green manures, fungal/bacterial ratios



O<sub>2</sub> Levels

# Emerging manipulation concepts:

Mobilization to deeper horizons

- Enhance hydrolysis of active organic C pools
- Conversion to passive organic C pools
- Approach
  - Regional soils
  - Lab-scale studies
  - Field-scale manipulation





# Microbial microarray technology for exploring soil

Carbon processes
Functional Gene Arrays allow insights into microbial processes, community structure, and activities

#### 6,698 gene probes from 30 organisms

- ➤ Nitrogen cycling: 1,882
- ➤ Sulfate reduction: 1,050
- > Carbon cycling: 1,810
- Phosphorus utilization: 156
- Organic degradation: 1607
- Metal resistance and oxidation: 193

Preliminary results: Sample from reclaimed mined lands (NETL Project, Palumbo & Amonette)



#### Advances in Modeling Tools: Improving process models and extrapolations

#### **EPIC Model**



- □ Data are used to improve applicability of the model for spatial and temporal extrapolation
- Combined with regional databases model can extend observations over conditions not directly measured
- EPIC model also handles management and erosion

# Model analysis of full CO<sub>2</sub> and greenhouse gas accounting

#### **⇒** Agriculture

- > Tillage
- > Fuel
- > Fertilizer/pesticides
- > Lime, seeds
- N₂O, CH₄

#### **⇒** Forest harvest

- > Forest growth, age
- > Harvest operations
- Fate of wood products



West, T.O. and G. Marland. 2002. Environ. Pollution 116:437-442.

# Analyzing economic implications

(Agricultural Sector Model)



McCarl, B.A. and Schneider, U.A. (2001). *Science* **294**, 2481-2482.



#### What you will hear today: Multi-scale & Multi-disciplinary studies

#### Discovery of options

> Understanding mechanisms to identify manipulation strategies (Fermilab)

#### Tools for extrapolation

- > Improve process models and landscape-scale simulations (Coshocton & Fermilab)
- **⇒** Integrative Regional Study
- Summary & Future Directions



North Appalachian **Experimental Watershed** (Coshocton, OH)







# Conversion of Croplands to Grassland: Understanding carbon sequestration dynamics, potentials, and mechanisms at multiple scales

Julie Jastrow
Argonne National Laboratory

(with R. Matamala, M. Miller, V. Allison, ANL; V. Bailey, H. Bolton, F. Brockman, J. Amonette, PNNL; J. Smith, USDA-ARS; J. Six, UC Davis; C. Garten, ORNL)

March 19, 2003



## DOE National Environmental Research Park at Fermilab: Research site of opportunity

Chronosequence of prairie restorations initiated in 1975

**⇒** Prairie remnants

⇒ Fields converted to Eurasian pasture grasses c.1971



## Multi-scale/multi-disciplinary studies at Fermilab

- Accrual of ecosystem C and N stocks
- → Nitrogen controls on C accumulation
- Mechanisms controlling soil C stabilization
- Microbial biomass, diversity, function and activity
- Interfacial and molecular controls on humification
- Model parameterization and validation



#### Fermilab chronosequence studies



#### **⇒** Three soil types

- Wet mesic,
  Drummer silty clay loam
- Mesic,
  Wauconda silt loam
- Dry mesic, Barrington silt loam

#### **⇔** Chronosequence

- > 2 Agricultural fields
- > 9 Prairie restorations
- > 1 Prairie remnant
- ⇒ Sample above- and belowground (1-meter depth)

#### Depth distribution of inputs and soil C

- Belowground biomass in older restored prairies equals or exceeds remnants
- Root and rhizome inputs drive changes in soil C
- Greatest soil C increases in surface 5-10 cm
- → Potential for long-term soil C accrual to 25-30 cm



Soil depth incre



# Accrual of soil organic C sustained over 25 years



Based on equivalent soil mass for 0-15 cm depth at time zero

Exponential model predicts accrual of 0.54 Mg C ha<sup>-1</sup> y<sup>-1</sup> for 25 years in the surface 15 cm

```
      Ce
      118.6 Mg ha

      MRT
      96 y

      to
      66 y
```

#### Effect of soil moisture/drainage conditions

- Moisture affects equilibrium C for both disturbed and native
- □ Initial rates of C accrual are similar
- Time to equilibrium may vary



Protective capacity of these soils overcomes any differences in inputs

| % of $C_e$ accrued in 50 y |    |  |
|----------------------------|----|--|
| Wet mesic                  | 53 |  |
| Mesic                      | 59 |  |
| Dry mesic                  | 71 |  |

#### Grassland type influences soil C accrual



- ⇒ Prairie increments verify modeled rates
- → Pasture grasses at equilibrium by 13 years
  - ➤ Lower productivity (fertilizing might raise equilibrium)
  - > Timing and quality of inputs affect decomposition

# Changes in soil N cycling under restored prairie lead to accumulation of soil N

|              | Estimates based on <sup>15</sup> N pool dilution |                             |               |  |
|--------------|--------------------------------------------------|-----------------------------|---------------|--|
| Site         | Mineralization                                   | NH <sub>4</sub> Consumption | Nitrification |  |
|              | μ <b>g N g<sup>-1</sup> soil d<sup>-1</sup></b>  |                             |               |  |
| Row crop     | 22.2                                             | 17.5                        | 14.7          |  |
| 8-y Prairie  | 11.6                                             | 9.5                         | 0.1           |  |
| 22-y Prairie | 4.3                                              | 9.7                         | 0.3           |  |

- N cycling most rapid in the agricultural soil
- → Net N mineralization decreases with time in prairie
- Increased N retention and tighter N cycling
- N accrual sustains plant productivity and thus increases C storage

Conceptual models of soil C cycling and protection mechanisms used to develop new soil fractionations



### Incorporation into microaggregates:

- Physically protects organic inputs from decomposition





Microaggregates ~ 50-250 µm



Particulate organic matter colonized by saprophytic fungi

0

Silt-sized aggregates with microbially derived organomineral associations

- Plant and fungal debris
- Fungal or microbial metabolites
- Biochemically recalcitrant organic matter
- Clay microstructures

#### Mechanistic-based soil fractionations and

stable isotopic tracers provide new

needtaainneed in milinaaction



SMicroaggregates facilitate creation organomineral associations. (more new C in microaggregatecassociated silt and clay)

h = Hydrolyzable C r = Chemically resistant C

% New (C3-derived) C in fraction

Microaggregate protection increases the longevity of



Non-Microaggregated

h = Hydrolyzable C r = Chemically resistant C

### Rates of C accrual vary with particle size



- Particulate OM reaches equilibrium first
- Largest increases in silt-sized fraction

- ⇒ ~50% of silt-associated C is chemically resistant across the chronosequence
- Mineral-associated C has potential for entering longer lived pools

### Plant inputs, quality, and manipulations associated with microbial changes



DNA fingerprinting shows bacterial community structures recover faster than fungal communities



#### PLFA analyses indicate:

- Changes in relative abundance of microbial functional groups are driven by plant inputs (amounts and quality) and related to changes in SOM and bulk density
- Fungal:bacterial ratios directly related to plant inputs
- Mycorrhizal fungi account for most of the increased fungal abundance

# Increases in soil fungal:bacterial ratios and microbial diversity could increase the longevity of stored C

- Fungi use carbon more efficiently than bacteria (more C goes to biomass and less to respiration)
- Fungal cell walls are more difficult to decompose (e.g., chitin, melanin)



Managing plant communities or cultivars could effect micro-scale changes that may enhance sequestration

#### Can we optimize humification? Sequestration in prairie soils provides clues

#### Redox conditions

- Wetting/drying cycles
- Aggregation and roots density affect microsite conditions
- ⇒ Fe/Mn oxide content
  - > Fe/Mn nodules
- Enzyme activities
  - Roots with relatively high lignin contents
  - High fungal:bacterial ratios
  - Microaggregate pores may help stabilize enzymes





#### Multi-scale/Multi-disciplinary Research: Significance & Summary

- Quantifying C sequestration rates and potentials
  - Model verification and validation
  - Contribute to improved spatial and temporal extrapolations
- Providing process-based and mechanistic understanding
  - Basis for model improvements
  - Design experimental systems to test potential management strategies for enhancing C sequestration











# Model Development to Extrapolate Process Scale Results to the Landscape: Examples from Coshocton and Fermilab

#### César Izaurralde

Pacific Northwest National Laboratory
(with W. Post, ORNL; R. Lal, Y. Hao, P. Puget, Ohio St.
Univ.; L. Owens, USDA-ARS; J. Williams, Texas A&M Univ.;
J. Jastrow, R. Matamala, ANL)
March 19, 2003



# Suitability of the North Appalachian Experimental Watershed (NAEW) for Spatial and Temporal Extrapolation of soil C sequestration

- - > Corn-soybean rotations
  - > No till (NT) vs. plow till (PT) corn systems
- Management history has been kept since 1938
- → Historical measurements of soil carbon, crop production, and soil erosion losses are available
- Detailed climate and soils information are available for modeling inputs and parameters

#### NAEW History and Layout

□ Entire watershed divided into small bermed subcatchments with separate treatments

Current rotations established in 1976



# CSiTE Work Summarized Existing Information and Initiated Process Studies

- Completed survey of management effects on soil C and N
- □ Initiated process studies to examine mechanisms associated with observed soil C differences
  - Developed new method of determining soil C loss due to erosion
  - Used particle size fractionation and isotopic analysis to examine mechanisms of soil carbon accumulation and fate
- Conducted simulation modeling studies of soil C dynamics and erosion using data from long-term studies

#### Management effects on C and N stocks

|                          | Soil C<br>(Mg ha <sup>-1</sup> ) | Soil N<br>(Mg ha <sup>-1</sup> ) |
|--------------------------|----------------------------------|----------------------------------|
| Old growth forest        | 65                               | 5.8                              |
| Meadow<br>(Hayed field)  | 49                               | 4.8                              |
| Plow till corn           | 41                               | 3.5                              |
| No till corn             | 52                               | 5.6                              |
| No till corn-<br>soybean | 47                               | 5.3                              |

### Carbon and soil aggregates Puget et al.

- Carbon distributed differently among soil aggregate fractions
- □ ⇒ Larger aggregates contained more C than smaller aggregates, except in PT corn
- ⇒ <sup>13</sup>C analysis revealed that corn residues represented about \_ the C in PT corn while it represented >90% in NT corn

#### Puget et al.

- ➢ Plow till corn soil contained 63% of C in forest soil
- No till corn had highest soil C content of all managed systems
- Soil N content in no till soils was very similar to that found in forest soils



Land uses and tillage practices

# Integrating soil and biological processes at landscape scale through simulation modeling

#### **EPIC Model**



**Representative EPIC modules** 

**Williams (1995)** 

- EPIC is a comprehensive model to describe climate-soil-management interactions at point or small watershed scales
- ⇒ EPIC estimates the impacts of management on wind and water erosion
- □ CSiTE investigators recently updated C & N modules in EPIC (Izaurralde et al., 2001)
- CSiTE data could be used to improve applicability of the model for spatial and temporal extrapolation
- Combined with regional databases, this and other models (e.g., Century) can extend observations over conditions not directly measured

### Land-use History for Conventionally Tilled (CT or PT) and No Tilled (NT) Watersheds (Puget et al.)

#### Watershed 128 (W128)

| Corn-wheat-meadow-meadow | NT<br>corn | Pasture | CT corn |      |
|--------------------------|------------|---------|---------|------|
| 1939                     | 1975       | 1979    | 1984    | 2002 |

#### Watershed 188 (W188)

|      | Corn-wheat-meadow-meadow | NT corn |      |
|------|--------------------------|---------|------|
| 1939 |                          | 1970    | 2002 |

- ⇒ The EPIC model prepared to study management and erosion effects on soil C of W128 and W188
- Crop modeled included: corn, wheat, timothy, fescue, and alfalfa

- Soil layer properties were obtained from Kelley et al. (1975) and L. Owens (pers. comm.)
- CO<sub>2</sub> concentration increased from 296 to 370 ppm (25% increase)

### Modeling Results for NAEW 63 year simulation without erosion



### Soil C stocks to 20 cm depth in Plow till (W128) and No till (W188) watersheds

- Soil erosion altered depth of soil layers
- Simulated C stocks were lower than observed values
- Eroded C in
  W188 was \_ that
  of W128





Data source: Puget et al.

# A comparison of annual rates of soil C erosion (Mg C ha<sup>-1</sup> y<sup>-1</sup>) measured or estimated in NAEW watersheds



**Detail of Coshocton wheel** 

| Source               | Period         | <sup>137</sup> Cs | RUSLE | EPIC  | Soil sediment collected |
|----------------------|----------------|-------------------|-------|-------|-------------------------|
| Hao et<br>al. (2001) | 1951 –<br>1998 | 0.041             | 0.149 | -     | 0.026                   |
| This study<br>W128   | 1939 –<br>2001 | -                 | _     | 0.333 | -                       |
| This study<br>W188   | 1939 –<br>2001 | -                 | -     | 0.084 | -                       |

### Modeling soil C dynamics in a prairie restoration experiment at Fermilab

- The EPIC model was used to study soil C dynamics in prairie restoration experiment
- A 25-y weather record was assembled from Aurora, IL
- Crop parameters were adapted for modeling big bluestem growth
- Soil layer properties for the Drummer soil were obtained from STATSGO database and complemented with site information
- A 25-y run (1975 1999) simulated the conversion of an agricultural field to a pure stand of big bluestem
- ➢ N deposition was simulated at a rate of 2.1 mg/L (NADP)



Izaurralde et al. (2001)

## Simulated and observed average above and below ground big bluestem biomass (Mg/ha)



Andropogon gerardii

|             | Above<br>ground<br>biomass | Roots<br>0-5 cm | Roots<br>5-15 cm | Roots<br>15-25<br>cm | Root /<br>Shoot<br>ratio |
|-------------|----------------------------|-----------------|------------------|----------------------|--------------------------|
| Sim<br>late | 8.5                        | 6.9             | 3.7              | 1.1                  | 1.38                     |
| Obs<br>ve   | 8.3                        | 9.0             | 3.1              | 1.8                  | 1.67                     |

#### 0-5 cm depth

# Simulated and observed soil C (%) under big bluestem

- Overall, EPIC captured the soil

  organic dynamics observed during
  25 years in the Fermilab
  chronosequence experiment
- Most of the observed increase in soil C occurred in the top 5 cm soil depth
- The simulated annual rate of soil C accrual to 15 cm depth was lower than the one observed:
  - Simulated: 0.34 Mg/ha
  - Observed: 0.54 Mg/ha
- ⇒ The under prediction of soil C by the model may be related to the under prediction of root and rhizome biomass in the top 5 cm soil depth



5-15 cm depth



### Initial and final soil microbial biomass C (%) in Fermilab chronosequence

|                              | 0-5 cm | 5-15 cm | 15-25 cm |
|------------------------------|--------|---------|----------|
| Initial<br>(1974)            | 1.0    | 1.0     | 1.0      |
| Final<br>(1999)<br>Simulated | 3.2    | 2.7     | 2.6      |
| Final<br>(1999)<br>Observed  | 3.1    | 2.7     | 2.5      |



<u>Credit:</u> R. Campbell. 1985. Plant Microbiology. Edward Arnold, London. p. 149.

Distribution of C within soil C pools

- Passive C represented ~54% of the total
- Most of the C accrual occurred in the slow C pool



### Using Model Results to Calculate Regional Soil C Sequestration

- Data from Coshocton and Fermilab and simulation modeling allow estimating
  - C sequestration potential over time
  - > C in eroded sediments
- ⇒ The model can be used to extrapolate to regional edaphic and management conditions
  - Multi-field version of EPIC
- Capability to simulate non-CO₂ gases (e.g. N₂O) will be available in near future



Land use pattern in NAEW region: Forests, meadows and cropland



### Summary

#### Long-term experiments at Coshocton

- Have historical record needed to study temporal and spatial dimensions of soil C dynamics
- Provided opportunity to study processes that control soil C accumulation or loss under traditional and alternative management
- Improved our understanding of the role of erosion in soil **C** sequestration

#### CSiTE investigators

- Enhanced modeling tools to conduct comprehensive evaluations of soil C sequestration
- Conducted extensive tests of model performance using data from Coshocton, Fermilab and other experiments worldwide





# Integration for Regional Carbon Sequestration Evaluation

Wilfred M. Post
Oak Ridge National Laboratory
(And CSiTE Team)
March 19, 2003



#### Need for an Integrated Approach

- → Agricultural, silvicultural, and land-use management for C sequestration will be adopted only if:
  - Amount, capacity, and longevity are known,
  - Net reductions in greenhouse gases occurs,
  - > Methods are environmentally beneficial, and
  - > Economic aspects are attractive.
- Science methods need development to take discoveries in C sequestration at the plot scale to perform regional scale environmental and economic analyses.

### Integrated Approach to Evaluating Terrestrial C Sequestration

### CSiTE is developing an approach that involves:

- Identification of promising technologies
- Understanding basic mechanisms
- Performance of sensitivity analysis
- Inclusion of full C and GHG accounting
- Evaluation of environmental effects
- Performance of economic analysis

### 1. Identification of Promising Technologies

- Analysis of sequestration in existing practices.
- Identification and testing of novel manipulations.
- 2. Understand Controls and Basic Mechanisms
- Edaphic, biological, and environmental conditions.
- Physical protection, biochemical recalcitrance, chemical protection.
- 3. Perform Sensitivity Analysis for Spatial and Temporal Extrapolation
- **→** Models generalize experimental results.
- Use models and GIS data calculate sequestration.



### 4. Inclusion of Full C and GHG Accounting

Include net GHG emissions for all components of management.





5. Evaluation of Environmental Effects

⇒ Erosion control, water quality⇒ Biodiversity

#### 6. Perform Economic Analyses

- **⇒** For a management practice to be adopted it must be:
  - Cost effective
  - Involve tolerable amounts of risk
  - Have a market (economic) method or a fair governmental (social) method of implementation
- Economic models require a cost per ton calculation
- Cost per ton should include:
  - Net cost of practice, amount of GHG offset
  - Producer development cost, adoption inducement cost
  - Market transaction costs, governmental costs
  - Discounts
  - Value of co-benefits

Cost per ton = 
$$\frac{\text{net cost of practice}}{\text{amount of GHG offset}}$$

Private cost per ton = 
$$\frac{(PDC + PAIC + MTC - GC)}{GHGO*(1-DISC)}$$

Social cost per ton = 
$$\frac{(PDC + PAIC + MTC + \ddot{o} *GC - CB)}{GHGO*(1-DISC)}$$

### CSiTE Integration Activity: Potential Region

- Includes forest and agriculture management, both potential components of a N.A. carbon sink,
- □ Includes current intensive CSiTE study areas, and
- Allows analyses of complex tradeoffs.





#### Regional Integration Activity Summary

- Integrated approach allows full evaluation of merits of a proposed C sequestration practice.
- Series of steps for evaluating C sequestration enhancement method involve:
  - Identify promising techniques
  - Understand controls and basic mechanisms
  - Perform sensitivity analysis
  - Include full C and greenhouse gas accounting
  - Evaluate environmental impacts
  - Perform economic analyses
- CSiTE is completing a concept paper and developing an approach to analyze a diverse region of the U.S.
- Integrated evaluation framework can
  - Reveal gaps in our data and knowledge base.
  - Guide evaluation of proposed new soil C sequestration methodologies.





#### Summary

### **F. Blaine Metting, Pacific NW National Laboratory** and **CSiTE Team**

**CSiTE Mission**: Fundamental science supporting approaches for enhanced C sequestration in terrestrial ecosystems

**CSiTE Goal**: Establish the scientific basis for enhancing C capture and long-term terrestrial sequestration

via Discovery and characterization of critical pathways and mechanisms to create larger, longer-lasting C pools

#### Accomplishments to date:

- New R&D tools Experimental & modeling approaches
- Insights Biological & physical controls of C seq., economic & environmental impact potential
- Emerging manipulation concepts



#### Future CSiTE Directions

#### **⇒** Continue

➤ Multi-scale/multi-disciplinary research

➤ Model development & landscape

extrapolations

#### **⇒**Explore

- New manipulations
- > Regional analyses



#### Questions?



